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A linear, a plane square, and a simple cubic hard core lattice model are
treated by a mean-field approximation combined with a combinatorial
approach. Assuming a hard core interaction between -nearest-neighbor
lattice sites and a rather arbitrary soft pair interaction between lattice sites
placed at longer distances from one another, inert-gas-like phase diagrams
can be constructed for suitable chosen combinatorial ansatzes.
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1. INTRODUCTION

The thermodynamic properties of fluids and crystals can be understood in
terms of a statistical mechanical lattice model consisting of a great (infinite)
number of classical particles moving from site to site on a very large (infinite)
regular lattice after the laws of classical mechanics. The interaction between
the particles is thereby considered in general as a pair interaction, which
consists of a short-ranged hard core with a soft interaction tail of arbitrary
range.-3%

In a preceding paper,®® referred to hereafter as paper I, we investigated a
classical system of particles on a linear, on a plane square, and on a three-
dimensional simple cubic lattice with a hard core interaction extending up to
the first nearest-neighbor shell and an arbitrary soft pair interaction —u;;
of infinite range but with a finite total interaction energy per lattice site —v.
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Treating the part of the grand canonical partition function that is
governed by the soft interaction tail in mean-field approximation and the
hard core part in Kikuchi’s quasichemical (QC) approximation,®® the
existence of at most three stable phases—a gas phase, a liquid phase, and a
crystalline phase with close-packed periodic structure—could be proved for
each of the three lattice types. It has also been shown that the three phases
can undergo gas-liquid and fluid-solid phase transitions of first order.

On the other hand, a realistic pressure-temperature phase diagram,
which exhibits the characteristics of a real gas-liquid-solid phase diagram
as known from inert gases,®® could be calculated only by assuming a suitable
functional dependence between the geometrical structure of the interaction
and the temperature. (See Fig. 9 in 1)

In the present paper? it will be shown how, by a somewhat more general
combinatorial approach using the combinatorial factor®® Wg(py, po),
which may be called a modified quasichemical (MQC) approximation, a still
greater agreement of the theoretical results for these models with experimental
data can be reached. :

2. DERIVATION OF STATE EQUATIONS AND THEIR SOLUTION

The hard core correlation in our lattice models is transferred only by
nearest-neighbor links. It therefore appears reasonable to reduce the calcula-
tion of Wye(p1, po), Which is the number of compatible hard core configura-
tions with fixed sublattice densities p,, ps on our lattices with coordination
number z, which are composed of a black sublattice 1 and a white sublattice 2
each consisting of V/2 lattice sites (see Fig. 1a), to a counting of configuration
numbers

Q(c, @V 2P E), OO, (VDX p V5 (k), (V2 p*®)(k))
and
Q(d, (zV[2)Xp) (), (zV [2)Xp*#)(k))
on certain pseudolattices ¢, b, d according to the ansatz®8-37
Wro(p1s p2) = O(c, 2V [2Xp@)(k))

x [ Ob, (V[2Kp™2(), (V[2{p (k) ]vww
0d, @V ) p™D5(k), VD ™P(k)

Thus Q(m, {x,,(m)V{p">(k)}) is generally the number of configurations on a

(M

2 Parts of this work and of Ref. 39 have been presented at the Spring Meetings of the
Deutsche Physikalische Gesellschaft in Miinster (19-24 March 1973) and of the
Bunsengesellschaft fiir Physikalische Chemie in Erlangen (31 May-~2 June 1973).
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Fig. 1. Pseudolattices produced by successive intersection of a plane square lattice
composed of two equivalent sublattices.

pseudolattice m consisting of x,,(m)V uncorrelated lattice site subsets of
type /h built up by / lattice sites in the way 4, where the lattice site subsets I,
which are occupied by only one or no particle in the way k, occur with the
fixed probability <p™)(k). The pseudolattices ¢, b, d, which must be con-
sidered only in the case of our models, consist of zV'/2 uncorrelated nearest-
neighbor links (Fig. 1c) and ¥/2 or zV /2 uncorrelated black and white lattice
sites (Figs. 1b, 1d), respectively.

The a(p;, ps) in (1) can be assumed in general to be an arbitrary positive
function, which varies probably slowly in a wide region of the p,, p; domain.

The configuration numbers Q(m, {x,,(m)V<{p"®>(k)}) on the pseudo
lattices can be counted easily by the formula

G(m)!
Cen(m)V{pH (k) !

where in Q(c, (zV/2){p®>(k)) the correct probabilities {p®>(k) of the sub-
figures listed in Fig. 2 must be inserted, while in Q(b, (V/2){p*V>(k),

(V2Xp"®)(k)) and O(d, (zV [2XpIV)(k), (zV [2){pT2)(k)), <p™PH(1) = py
and {p™™»(2) = 1 — p, can be used.

O(m, {xu(m)V{p™)(k)}) = I;I T )



176 H. P. Neumann
+ - - + - - + +

(a} (b} © (d)

Fig. 2. Basic subdiagrams on a periodically occupied rectangular lattice, with the mean
occupation numbers (a) <p@X(1) = p1, (b) <PPX(2) = ps, (€) (PPH3) =1 — p1 — po,
(d) <p®@>(4) = 0. The plus sign means occupation by a particle, while the minus sign
means occupation by a hole.

Because «(p;, po) in (1) is a comparatively arbitrary function, there are
many possibilities for approximate calculations of Wgg(py, ps), but the
suggestion that a(p,, p,) is a slowly varying function justifies taking in a first
approximation « in (1) simply as a variable parameter.

The corresponding mean-field state equations®® calculated with the aid
of (1) and (2) are then

p = Ho(1)(p)? + v(2)(p2)® + v(12)p1ps + v(21)pepy
+ 2(py + pp + 2[ef)(z ~ 1)1 — py) In(1 — py)
+ (z = D1 = py) In(1 — py)
—[z(e = 1) + llpyIn p; — [z(e — 1) + 1]pgIn py

— az(l — py ~ pz) In(l — p; — p)I} 3)
a _(1 P_l_)::(f_l);;;;:”l — exp{aﬁ[v(l)pl + U(lz)p2 + }L]} (4)
(1 = po)*"Hpa?~ V¥t exp{eBv(2p, + v(21)py + pl} )

(I — p1 — pg)*®

where p is the pressure; B = 1/kT, with £ Boltzmann’s constant and T the
absolute temperature; and g is the chemical potential.

The interaction terms »(1) and »(2) are the total negative interaction
energies per lattice site on the sublattices 1 and 2. The terms uv(r, s) represent
the total negative interaction energy between one lattice site i of the sub-
lattice r with all the other lattice sites of sublattice s that are not nearest
neighbors of i.

The terms v(1), v(2), v(12), and v(21) can be easily expressed in terms of
v and an interaction structure parameter o, defined by

7 = (1/0)[e(1) — x(12)] = (/)[»(2) — v(21)] (6)

One recognizes that o = 1 yields the QC state equations of paper 1.
This corresponds to an approximation considered previously for fluid
phases.©6:37

The state equations (4) and (5) can be solved now by the same method as
employed in paper 1. A detailed investigation shows that solutions of (4) and
(5) that are not unreasonable can be obtained only for values of « with
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z{(e — 1) + 1 > 0. For these values of «, as in paper I, a homogeneous
solution p; = p, of (4) and (5) is found, which describes partially a stable gas
phase g and partially a stable liquid phase /. Further, an inhomogeneous
solution p; > p, is found describing a stable solid phase s. Corresponding
density and pressure state isotherms similar to that in paper I can be con-
structed. The homogeneous solution of (4) and (5) thus exhibits only a weak
dependence on .

The contrary is true for the behavior of the inhomogeneous solution of
(4) and (5). A complete solution of (4) and (5) shows that in the following
cases

@ zZce—2)+220
(b) z(e -2)+2<0, a>c*
© ze—=1H+1>0, aa<a*

essentially different solid state isotherms and fluid-solid phase transition
curves result [«* is the value of « for which the higher density zero of the
denominator in (8) coincides with the zero of f; from (9)].

For a better illustration the pseudo-critical density p., as a function of
the interaction structure parameter 7 is given in Fig. 3 and complete pressure—
temperature phase diagrams are shown in Figs. 4-7.

(0,13)

Fig. 3. Densities pe,s vs. 7 calculated from (7)—(9). Regions of coordinates: 0 < pges <
0.5; —o0 < 7 < 0. Part (a) is valid for z(« — 2) + 2 = 0; (b) is valid for z(« — 2) +
2 <0, a > a*; (c)is valid for « = a*; (d) is valid for ¢ < «*, z(e — 1) + 1 > 0. The
solid curves correspond to a soft interaction tail with v > 0, the dashed curves to an
interaction with v < 0. The numbers 0, 1 indicate the zeros of f; and f; in (9), and 2, 3
indicate the zeros of the denominator of (8) with lower and higher density. The (0, 1, 3)
in (a) is only valid for z(a — 2) + 2 = 0. At p,es = 0 we always have § = —2,
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Fig. 4. Pressure-temperature (ppn~fv) phase diagram for the coexistence curves of a
z{la — 2) + 2 > 0.

lattice system with a mean repulsive soft particle interaction (v < 0) for the case v > 0,
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Fig. 5. Pressure-temperature (prn—Bv) phase diagram for the coexistence curves of a
Zla —2) + 2> 0.

lattice system with a mean attractive soft particle interaction (v > 0) for the case v7 > 0,
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Fig. 6. Pressure-temperature (pey—fv) phase diagram for the coexistence curves of a
lattice system with mean attractive soft particle interactions (» > 0) of types vi 2 0
in the case z{e — 2) + 2 < 0, jz(¢ — 2) + 2| « 1.
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Fig. 7. Pressure-temperature (psn—Bv) phase diagram for the coexistence curves of a
lattice system with mean attractive soft particle interactions (v > 0) of types v 2 0
in the case ¢ < o*, z(a — 1) + 1 > 0.
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The pseudo-critical points of the fluid-solid transition are characterized
by a change of the first-order fluid-solid transition into a continuous order—
disorder transition. These critical points have very little in common with the
gas-liquid critical point marked with the index cg/ in Figs. 5-7. Therefore
they may be called pseudo-critical points. The pseudo-critical density pggs
and the pseudo-critical temperature 1/kB,,, are determined by the equations

1 Jo

2t pegs(l = pegs) M
o=(— 2chs)f0f 1{40‘2ch3(1 - chs)fl

+ (1 = 2peee)[ foft + 3(f2°B1 ®

The f;, f1, and f, in (7) and (8) are the following functions:

fO(chs) =z{e — 2) + 2 + cz(l — 2pcq)
fl(chs) = (Z - 1)(chs)3 - [Z(a - 1) + 1](1 - chs)3 (9)
f2(chs) = (Z - 1)(chs)2 + [Z(Oc - 1) + 1](1 - chs)z

The various lines in Figs. 4-7 have the following meanings: The heavy,
partially solid, partially dashed lines represent condensation curves. The
groups of thin, partially solid, partially dotted lines with the parameter &
represent fluid—solid transition curves. The parts of the fluid—solid transition
curves that lie above a condensation curve represent for gas-liquid sub-
critical temperatures the fluid-solid transition of a three-phase gas-liquid-
solid system. All other parts represent the fluid—solid transition of two-phase
fluid-solid systems. In Figs. 5-7 the fluid-solid transition curves intersect the
condensation curves for smaller values of || in triple points of types T; and
Ts.

BegstT =

The triple points 7} in Figs. 5 and 6 are realistic, while the triple points
T, in Fig. 5 and 7 are pseudo-critical points. They are not very realistic
because for higher temperatures only a continuous order~disorder fluid-solid
transition exists.

The continuous parts of the thin fluid-solid transition curves are due to
first-order transitions. The dotted parts describe the continuous order—
disorder transitions. Both parts are separated by the thinner dashed curves
in Figs. 4-7,® which are calculated by (7)-(9) and correspond to the curves in
Fig. 3. In the case v > 0 this is only true in the Bv regions where the dashed
curves lie above the heavy condensation curves.

In Figs. 5-7 the thinner dashed curves intersect the heavy condensation
curves and lie below these curves at lower temperatures. For these tempera-

8 The dashed curves have high-pressure asymptotes p(# = + )
0 and low-pressure asymptotes p(f = —2) = 0, fo(T = —2)
p (@ = 0) = —%v(pegs)?, [Bv(F = 0)] = oo (in Figs. 5 and 7).

= 4o, Bv(d = o) =
= —oo (in Fig. 4) and
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tures the pseudo-critical curves are identical with the condensation curves and
not with the thinner dashed lines.

The fluid-solid transition curves with o5 > 0 in Figs. 4 and 5 have
asymptotes at temperatures defined by

Bt = 2[z(e — 2) + 2]/ex (10)

while the fluid-solid transition curves in Figs. 6 and 7 have one common
asymptote at fv = 0 for both v 2 0, and for v5 < 0 have asymptotes defined
by

Bub = (4Je)z(e — 2) + 2]1n 2 (1)

For predominantly attractive soft interactions with smaller values of 7,
Fig. 5 up to medium temperatures and Fig. 6 for the whole range of tempera-
tures show the existence of quite realistic fluid—solid transition curves. Such
curves are drawn in Figs. 5 and 6 as heavy dotted lines, yielding, together
with the continuous parts of the condensation curves, realistic inert-gas-like
phase diagrams. The dashed parts of the condensation curves then represent
fictitious parts, because in this range of temperature, liquid phases are not
stable. In Fig. 5, © is not allowed to become too small, otherwise unrealistic
triple points of type T, will occur.

Although the phase diagrams in case (a) of the MQC approximation
(Figs. 4 and 5) are in fair agreement up to moderately high pressures and
temperatures with experimental data for soft interactions with vo > 0, they
are nevertheless unsatisfactory for high pressures, high temperatures, and in
the limit v — 0. For high pressures the course of the fluid-solid transition
curves becomes wrong. For high temperatures and in the limit » — 0 only
fluid phases can occur, in contradiction to other theoretical results. -39

A further shortcoming is the nonexistence of a solid phase for soft
interactions with v < 0 in the whole range of temperature. Obviously the
combinatorial approach for Wyc(p,, po) Of case (a) is not very suitable, but
the shortcomings can be compensated partially by the mean-field treatment
of the soft interaction tail at least for interactions with v& > 0.

In case (c) of the MQC approximation the shortcomings of case (a) of the
MQC approximation are absent. This is underlined by the course of the
fluid-solid transition curves in Fig. 7. But unfortunately the triple points T,
and the nature of the fluid-solid transitions for temperatures above the triple
points T, are not very realistic.

All the imperfections of the MQC approximations (a) and (c) are
removed in the case of the MQC approximation of type (b). A typical phase
diagram for a predominantly repulsive soft interaction (v < 0), which is also
valid in case (c), is shown in Fig. 8 of paper 1. Characteristic phase diagrams
for predominantly attractive soft interactions (v > 0) are represented by
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Fig. 6 of this paper and Fig. 7 of paper 1. They are in fair agreement with
results of Runnels,®® who treated the same hard core lattice models con-
sidering short-ranged soft interactions with » 2 0, 7 = 1.

As demonstrated by the phase diagram of Fig. 6, the MQC approach of
type (b) is most suitable for describing experimental data, especially in the
case |z(e — 2) + 2| « 1. In this case for small & realistic complete pressure—~
density state diagrams according to Fig. 6 can be drawn like that represented
by Fig. 10 in paper 1.

Phase diagrams calculated in the QC approximation, such as Fig. 7 in
paper I, are more in agreement with results of Stell ez al.,®%3 who treated
our hard core lattice models in the case of long-ranged soft interactions, so-
called Kac potentials with v > 0, & = 0. The unrealistic high-pressure
asymptotes of the fluid-solid transition curves at lower temperatures in the
case v7 < 0 could not be removed by the MQC approximations. They are
probably caused by the imperfection of the mean-field approach.

REFERENCES

1. A. Mimnster, Statistical Thermodynamics, Vol. 1 (Academic Press, New York, 1969 )
and references cited therein.

2. T. D. Lee and C. N. Yang, Phys. Rev. 87:410 (1952).

3. C. Domb and M. F. Sykes, Advan. Phys. 9:245 (1960).

4. B. J. Alder and T, E. Wainwright, J. Chem. Phys. 33:1439 (1960).

5. B. J. Alder and T. E. Wainwright, Phys. Rev. 127:359 (1962).

6. W. W. Wood and J. D. Jacobson, J. Chem. Phys. 27:1207 (1957).

7. W. W. Wood, F. R. Parker, and J. D. Jacobson, Nuovo Cimento 9 (Suppl. 1):133

(1938).

8. C. Domb, Nuovo Cimento 9(Suppl. 1):9 (1958).

9. H. N. V. Temperley, Proc. Phys. Soc. (London) A 67:233 (1954).
10. H. N. V. Temperley, Proc. Phys. Soc. (London) B 70:536 (1957).
11. H. N. V. Temperley, Proc. Phys. Soc. (London) 74:183, 432 (1959).
12. H. N. V. Temperley, Proc. Phys. Soc. (London) B 77:630 (1961).
13. H. N. V. Temperley, Proc. Phys. Soc. (London) 80:813, 823 (1962).
14. D. M. Burley, Proc. Phys. Soc. (London) 75:262 (1960).

15. D. M. Burley, Proc. Phys. Soc. (London) 77:451 (1961).

16. D. M. Burley, Proc. Phys. Soc. (London) B 85:1173 (1965).

17. D. 8. Gaunt and M. E. Fisher, J. Chem. Phys. 43:2840 (1965).
18. F. H. Ree and D. A. Chesnut, J. Chem. Phys. 45:3983 (1966).
19. L. K. Runnels and L. L. Combs, J. Chem. Phys. 45:2482 (1966).
20. L. K. Runnels, Phys. Rev. Lett. 15:581 (1965).

21. L. K. Runnels, J. Math. Phys. 8:2081 (1967).

22. F. H. Ree and D. A. Chestnut, Phys. Rev. Lett. 18:5 (1967).

23. D. 8. Gaunt, J. Chem. Phys. 46:3237 (1967).

24. A. Bellemans and R. K. Nigam, J. Chem. Phys. 46:2922 (1967).

25. J. Orban and A. Bellemans, J. Chem. Phys. 49:363 (1968).
26. L. K. Runnels, J. Math. Phys. 11:842 (1970).
27. L. X. Runnels, J. P. Salvant, and H. R. Streiffer, J. Chem. Phys. 52:2352 (1970).



A Lattice Model for a Real Substance 183

28.
29.
30.
31.
32.
33
34,
35.
36.
37.
38.

Runnels, J. R. Craig, and H. R. Streiffer, J. Chem. Phys. 54:2004 (1971).
ban J. v. Craen, and A. Bellemans, J. Chem. Phys. 49:1778 (1968).
. Hoover, B. J. Alder, and F. H. Ree, J. Chem. Phys. 41:3528 (1964).
L Lebowitz and O. Penrose, J. Math. Phys. 7:98 (1966).
. J. Gates and’ O. Penrose, Commun. Math. Phys. 15:255 (1966).
. Stell, H. Narang, and C. K. Hall, PAys. Rev. Lert. 28:292 (1972).
. K. Hall and G. Stell, Phys. Rev. A7:1679 (1973).
Klkuchl, Phys. Rev. 81:988 (1951).
ijmans and J. de Boer, Physica 21:471-516 (1955).
. J. Kruseman Aretz and E. G. D. Cohen, Physica 26:967 (1960).
Cook, Argon, Helium and the Rare Gases, Vol. 1 (Interscience, New York,

QQN

an

N

:E‘(G_C)'TJL"WOC)U“‘Q"‘[—‘
"'d\_»—;?t’ﬂ

39. Neumann Z. Naturforsch. 29a:65 (1974).



