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A linear, a plane square, and a simple cubic hard core lattice model are 
treated by a mean-field approximation combined with a combinatorial 
approach. Assuming a hard core interaction between nearest-neighbor 
lattice sites and a rather arbitrary soft pair interaction between lattice sites 
placed at longer distances from one another, inert-gas-like phase diagrams 
can be constructed for suitable chosen combinatorial ansatzes. 

KEY W O R D S  : Hard core lattice model ; mean-field approximation ; quasi- 
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equations ; phase diagrams. 

1 .  I N T R O D U C T I O N  

The t he rmodynamic  proper t ies  o f  fluids and crystals  can be unde r s tood  in 
terms o f  a stat ist ical  mechanica l  lat t ice mode l  consis t ing o f  a great  (infinite) 
number  o f  classical part icles moving  f rom site to site on a very large (infinite) 
regular  lat t ice after  the laws o f  classical mechanics.  The  in terac t ion  between 

the part icles is thereby considered in general  as a pair  in teract ion,  which 
consists of  a shor t - ranged  hard  core with a soft in terac t ion  tai l  o f  a rb i t ra ry  
range.(1-a4) 

In  a preceding paper ,  (ag) referred to hereaf ter  as paper  I, we invest igated a 
classical system of  part icles on a l inear,  on a p lane  square,  and  on a three- 
d imens iona l  simple cubic lat t ice with a hard  core  in terac t ion  extending up to 
the first neares t -ne ighbor  shell and  an a rb i t ra ry  soft pai r  in terac t ion  -v~j  
o f  infinite range but  with a finite to ta l  in teract ion energy per  la t t ice  site - v. 

1 Institut ffir Physikalische Chemie der Universit/~t Frankfurt, Frankfurt/Main, Germany. 
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Treating the part of the grand canonical partition function that is 
governed by the soft interaction tail in mean-field approximation and the 
hard core part in Kikuchi's quasichemical (QC) approximation, (sS~ the 
existence of  at most three stable phases--a gas phase, a liquid phase, and a 
crystalline phase with close-packed periodic structure----could be proved for 
each of the three lattice types. It has also been shown that the three phases 
can undergo gas-liquid and fluid-solid phase transitions of first order. 

On the other hand, a realistic pressure-temperature phase diagram, 
which exhibits the characteristics of a real gas-liquid-solid phase diagram 
as known from inert gases, caa~ could be calculated only by assuming a suitable 
functional dependence between the geometrical structure of the interaction 
and the temperature. (See Fig. 9 in I.) 

In the present paper s it will be shown how, by a somewhat more general 
combinatorial approach using the combinatorial factor ~ag~ WHc(p~, p2), 
which may be called a modified quasichemieal (MQC) approximation, a still 
greater agreement of the theoretical results for these models with experimental 
data can be reached. 

2, D E R I V A T I O N  OF STATE E Q U A T I O N S  A N D  THEIR S O L U T I O N  

The hard core correlation in our lattice models is transferred only by 
nearest-neighbor links. It therefore appears reasonable to reduce the calcula- 
tion of W~c(p~, p2), which is the number of compatible hard core configura- 
tions with fixed sublattice densities p~, P2 on our lattices with coordination 
number z, which are composed of a black sublattice 1 and a white sublattice 2 
each consisting of  V/2 lattice sites (see Fig. 1 a), to a counting of configuration 
numbers 

and 

Q(e, (zV/2)(p(2~)(k)), Q(b, (V/2)(p(I~))(k), (V/2)(p(~2~)(k)) 

Q(r (zV/2)(p(ll~)(k), (zV/2)(#~)(k)) 

on certain pseudolattices c, b, d according to the ansatz (36'87~ 

WEe(p1, P2) = Q(c, (zV[2)(p(2))(k)) 

Q(b, (V[Z)(p(l~)(k), (V/2)(p(~))(k)) ]~I~(ol.o2~ 
• Q(d, (zV/2)(p(l~)(k), ~ ) J  (1) 

Thus Q(m, {x~h(m)V(p"h~)(k)}) is generally the number of configurations on a 

Parts of this work and of Ref. 39 have been presented at the Spring Meetings of the 
Deutsche Physikalische Gesellschaft in Mfinster (19-24 March 1973) and of the 
Bunsengesellschaft ffir Physikalische Chemic in Erlangen (31 May-2 June 1973). 
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Fig. t. Pseudolattices produced by successive intersection of a plane square lattice 
composed of two equivalent sublattices. 

pseudolattice rn consisting of x~h(rn)V uncorrelated lattice site subsets of 
type lh built up by l lattice sites in the way h, where the lattice site subsets lh, 
which are occupied by only one or no particle in the way k, occur with the 
fixed probability {p(Zh~)(k). The pseudolattices c, b, d, which must be con- 
sidered only in the case of  our models, consist of z V f2 uncorrelated nearest- 
neighbor links (Fig. lc) and V/2 or zV/2 uncorrelated black and white lattice 
sites (Figs. lb, ld), respectively. 

The ~(pl, p2) in (1) can be assumed in general to be an arbitrary positive 
function, which varies probably slowly in a wide region of the pl, p2 domain. 

The configuration numbers Q(rn, {xzh(rn)V(p(~h~)(k)}) on the pseudo 
lattices can be counted easily by the formula 

(xzh(m) V) ! Q(m, {x~h(m) 1--1 
lh l  I-I~ (x,h(m) V(p('h~)(k)) ! (2) 

where in Q(c, (zV/2)(p(2))(k)) the correct probabilities (p(2>)(k) of the sub- 
figures listed in Fig. 2 must be inserted, while in Q(b, (V/2)(p(ll~)(k), 
(V/2)(p(12~)(k)) and Q(d, (zV/2)(p(ll))(k), (zVf2)(p~2))(k)), (p(lh))(1) = ph 
and (p(ah>)(2) = 1 - oh can be used. 
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Fig~ 2. B a s i c  s u b d i a g r a m s  o n  a p e r i o d i c a l l y  o c c u p i e d  r e c t a n g u l a r  l a t t i ce ,  w i t h  the  m e a n  

o c c u p a t i o n  n u m b e r s  (a) (p(2~)(1) = P1, (b) (p(2))(2)  = p2, (c) (p~2))(3) = 1 - pl  - p~, 
(d) (p~2~)(4) = 0. T h e  p lus  s ign  m e a n s  o c c u p a t i o n  b y  a pa r t i c l e ,  w h i l e  t he  m i n u s  s i g n  

m e a n s  o c c u p a t i o n  by  a ho le .  

Because a(pl ,  p2) in (l)  is a comparat ive ly  arbi t rary function, there are 
many  possibilities for approx imate  calculations of  Wac(Ol, P2), but  the 
suggestion tha t  a(pl ,  p2) is a slowly varying function justifies taking in a first 
approximat ion  ~ in (1) simply as a variable parameter .  

The corresponding mean-field state equations (39) calculated with the aid 
o f  (1) and (2) are then 

p = �88 2 + v(2)(p2) z + v(12)plp2 + v ( 2 1 ) p 2 p i  

+ 2(m + p2)tz + (2/~fi)[(z - 1)(1 - pl)In(1 - pl) 
+ (z - 1)(1 - p2)ln(l  - pz) 
- [ z ( c ~  - 1 )  + 1]p1 In pl - [ z ( ~  - 1 )  + 1]p2 In t'2 
- a z ( 1  - p l  - p z ) l n ( 1  - P l  - p 2 ) ] }  ( 3 )  

(1  - p1)=- i ( p 1 ) ~ ( ~ -  1 )+1  
(1 -- Pl -- P2) ~z = exp{afi[v(1)p~ + v(iz)p2 + /z]} (4) 

(I - p~)~, 1(p~)~<~- ~)+~ 
(1 - P i  - P2) ~ = exp{~fl[v(2)p2 + v(2l)pi + /z]} (5) 

where p is the pressure;  fl = 1 / k T ,  with k Bol tzmann 's  constant  and T the 
absolute tempera ture ;  and tz is the chemical potential.  

The interaction terms v(1) and v(2) are the total  negative interaction 
energies per lattice site on the sublattices 1 and 2, The  terms v(r ,  s )  represent 
the total  negative interaction energy between one lattice site i o f  the sub- 
lattice r with all the other lattice sites o f  sublattice s that  are not  nearest  
neighbors of  i. 

The terms v(1), v(2), v(12), and v(21) can be easily expressed in terms of  
v and an interaction structure paramete r  ~, defined by 

= ( 1 / v ) [ v ( 1 )  - v(12)] = ( l / v ) [ v ( 2 )  - v(21)] (6) 

One recognizes that  a = 1 yields the QC state equations of  paper  I. 
This corresponds to an approximat ion  considered previously for fluid 
phases.(~s,37) 

The state equations (4) and (5) can be solved now by the same method as 
employed in paper  I. A detailed investigation shows that  solutions of  (4) and 
(5) that  are not  unreasonable  can be obtained only for  values of  a with 
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z(~ - 1) + 1 > 0. For  these values of  a, as in paper I, a homogeneous 
solution p~ - p2 of (4) and (5) is found, which describes partially a stable gas 
phase g and partially a stable liquid phase 1. Further, an inhomogeneous 
solution p~ > p2 is found describing a stable solid phase s. Corresponding 
density and pressure state isotherms similar to that in paper I can be con- 
structed. The homogeneous solution of (4) and (5) thus exhibits only a weak 
dependence on ~. 

The contrary is true for the behavior of  the inhomogeneous solution of 
(4) and (5). A complete solution of (4) and (5) shows that in the following 
cases 

(a) z ( ~ - 2 ) + 2 > /  0 
(b) z ( ~ - 2 ) + 2 ~ < 0 ,  ~ > ~ *  
(c) z ( ~ , - 1 ) + l > 0 ,  ~,<~* 

essentially different solid state isotherms and fluid-solid phase transition 
curves result [~* is the value of  a for which the higher density zero of the 
denominator in (8) coincides with the zero off1 from (9)]. 

For a better illustration the pseudo-critical density p~g~ as a function of  
the interaction structure parameter  ~ is given in Fig. 3 and complete pressure- 
temperature phase diagrams are shown in Figs. 4-7. 
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Fig. 3. Densities pc~s vs. f calculated f rom (7)-(9), Regions of  coordinates:  0 ~ pc~s ~< 
0,5; - ~  < g < ~ .  Part  (a) is valid for z(~ - 2) + 2 /> 0; (b) is valid for  z(~ - 2) + 
2 < 0, ~ > ~*; (c) is valid for  a = a*; (d) is valid for c~ < a*, z(~ - 1) + 1 > 0. The 
solid curves correspond to a soft interaction tail with v > 0, the dashed curves to an  
interaction with v < 0. The numbers  0, 1 indicate the zeros of f0  and f l  in (9), and 2, 3 
indicate the zeros of  the denomina to r  of  (8) with lower and higher density. The (0, 1, 3) 
in (a) is only valid for z(a - 2) + 2 = 0. At  pcg~ = 0 we always have g = - 2 .  
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Fig. 4. Pressure- tempera ture  (pph-~v) phase d iagram for the  coexistence curves of  a 
lattice system with a mean repulsive soft particle interact ion (v < 0) for the case vf  > 0, 
z ( a -  2) + 2 > 0. 
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Fig. 5. Pressure- tempera ture  (pph--~V) phase diagram for the coexistence curves of  a 
lattice system with a mean attractive soft particle interact ion (v > 0) for the case vg > 0, 
z ( a -  2) + 2 > 0. 
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Fig.  6. Pressure- tempera ture  (pph-flv) phase d iagram for the coexistence curves of  a 
latt ice system with mean attractive soft particle interact ions (v > 0) o f  types vg ~ 0 
in the case z(~ - 2) + 2 < 0, ]z(ce - 2) + 2] << 1. 
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Fig. 7. P ressure - tempera ture  (pp~-~v) phase d iagram for  the coexistence curves o f  a 
lattice system with mean  attractive soft particle interact ions (v > 0) o f  types vf  ~ 0 
in the c a s e ~  < ~ * , z ( ~ -  1) + 1 > 0. 
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The pseudo-critical points of the fluid-solid transition are characterized 
by a change of the first-order fluid-solid transition into a continuous order-  
disorder transition. These critical points have very little in common with the 
gas-liquid critical point marked with the index c g l  in Figs. 5-7. Therefore 
they may be called pseudo-critical points. The pseudo-critical density pcg~ 
and the pseudo-critical temperature l[kflcg~ are determined by the equations 

1 fo (7) 
B~~ = 2 a  Peos(1 - -  Pegs) 

= (1 -- 2 p ~ o s ) f o A { 4 a z p c g s ( 1  - -  Pcos)fa 

+ (1 - 2pc.3Lfof~ + 3(f2)2]} -1  (8) 

The f0, f l ,  and f2 in (7) and (8) are the following functions: 

f o (p~gs )  = z ( a  - 2) + 2 + az(l - 2pco~ ) 
f~(Pco~) = (z - 1)(p~3 3 - [z(a - 1) + 1](1 - p~s) 3 (9) 
f 2 ( p c , ~ )  = ( z  - 1)(p~,3 2 + [ z ( a  - 1) + 11(1 - p~,3 2 

The various lines in Figs. 4-7 have the following meanings: The heavy, 
partially solid, partially dashed lines represent condensation curves. The 
groups of thin, partially solid, partially dotted lines with the parameter 
represent fluid-solid transition curves. The parts of  the fluid-solid transition 
curves that lie above a condensation curve represent for gas-liquid sub- 
critical temperatures the fluid-solid transition of a three-phase gas-liquid- 
solid system. All other parts represent the fluid-solid transition of two-phase 
fluid-solid systems. In Figs. 5-7 the fluid-solid transition curves intersect the 
condensation curves for smaller values of  [~[ in triple points of  types Tx and 
T~. 

The triple points T~ in Figs. 5 and 6 are realistic, while the triple points 
T2 in Fig. 5 and 7 are pseudo-critical points. They are not very realistic 
because for higher temperatures only a continuous order-disorder fluid-solid 
transition existS. 

The continuous parts of  the thin fluid-solid transition curves are due to 
first-order transitions. The dotted parts describe the continuous order-  
disorder transitions. Both parts are separated by the thinner dashed curves 
in Figs. 4-7, 8 which are calculated by (7)-(9) and correspond to the curves in 
Fig. 3. In the case v > 0 this is only true in the fly regions where the dashed 
curves lie above the heavy condensation curves. 

In Figs. 5-7 the thinner dashed curves intersect the heavy condensation 
curves and lie below these curves at lower temperatures. For these tempera- 

a The dashed curves have high-pressure asymptotes p(t~ = + ~) = + 0%/3v(t5 = _+ ~)  = 
0 and low-pressure asymptotes p(f = -2)  = 0, 13v(g = -2)  = -oo (in Fig. 4) and 

p (~ = O) = - �89 2, [/~v(f = 0)1 = oo (in Figs. 5 and 7). 
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tures the pseudo-critical curves are identical with the condensation curves and 
n o t  with the thinner dashed lines. 

The fluid-solid transition curves with v~ > 0 in Figs. 4 and 5 have 
asymptotes at temperatures defined by 

f lv~ = 2[z(a - 2) + 2]/~ (10) 

while the fluid-solid transition curves in Figs. 6 and 7 have one common 
asymptote at fly = 0 for both v~ ~ 0, and for v~ < 0 have asymptotes defined 
by 

f lv~ = (41a)[z (a  - 2) + 2] In 2 (11) 

For predominantly attractive soft interactions with smaller values of 9, 
Fig. 5 up to medium temperatures and Fig. 6 for the whole range of tempera- 
tures show the existence of quite realistic fluid-solid transition curves. Such 
curves are drawn in Figs. 5 and 6 as heavy dotted lines, yielding, together 
with the continuous parts of the condensation curves, realistic inert-gas-like 
phase diagrams. The dashed parts of the condensation curves then represent 
fictitious parts, because in this range of  temperature, liquid phases are not 
stable. In Fig. 5, ~ is not allowed to become too small, otherwise unrealistic 
triple points of type T2 will occur. 

Although the phase diagrams in case (a) of the MQC approximation 
(Figs. 4 and 5) are in fair agreement up to moderately high pressures and 
temperatures with experimental data for soft interactions with v~ > 0, they 
are nevertheless unsatisfactory for high pressures, high temperatures, and in 
the limit v -+ 0. For  high pressures the course of the fluid-solid transition 
curves becomes wrong. For  high temperatures and in the limit v--~ 0 only 
fluid phases can occur, in contradiction to other theoretical results. r176 

A further shortcoming is the nonexistence of a solid phase for soft 
interactions with v~ < 0 in the whole range of temperature. Obviously the 
combinatorial approach for WHc(Pa, P2) of case (a) is not very suitable, but 
the shortcomings can be compensated partially by the mean-field treatment 
of the soft interaction tail at least for interactions with v~ > 0. 

In case (c) of the MQC approximation the shortcomings of  case (a) of  the 
MQC approximation are absent. This is underlined by the course of  the 
fluid-solid transition curves in Fig. 7. But unfortunately the triple points T2 
and the nature of the fluid-solid transitions for temperatures above the triple 
points T2 are not very realistic. 

All the imperfections of  the MQC approximations (a) and (c) are 
removed in the case of  the MQC approximation of type (b). A typical phase 
diagram for a predominantly repulsive soft interaction (v < 0), which is also 
valid in case (c), is shown in Fig. 8 of  paper I. Characteristic phase diagrams 
for predominantly attractive soft interactions (v > 0) are represented by 
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Fig. 6 of  this paper  and  Fig. 7 o f  paper  I. They are in fair agreement  with 
results  o f  Runnels ,  ~26~ who t rea ted  the same ha rd  core lat t ice models  con- 
s idering shor t - ranged soft in teract ions  with v X 0, g -- 1. 

As  demons t ra t ed  by the phase  d i ag ram of  Fig.  6, the M Q C  a p p r o a c h  o f  
type  (b) is most  suitable for  describing exper imenta l  data ,  especially in the 
case iz(c~ - 2) + 21 << 1. In  this case for  small  ~ realist ic comple te  p ressure -  
densi ty state d iagrams  according  to Fig. 6 can be drawn like tha t  represented 
by Fig. 10 in paper  I. 

Phase  d iagrams calcula ted in the QC approx ima t ion ,  such as Fig. 7 in 
paper  I, are more  in agreement  with results o f  Stell et al., ~33,3~ who t rea ted  
our  hard  core lat t ice models  in the case of  long-ranged  soft interact ions,  so- 
cal led K a c  potent ia ls  with v > 0, ~ = 0. The  unreal is t ic  high-pressure  
asympto tes  of  the f lu id-so l id  t rans i t ion  curves at  lower tempera tures  in the 
case v~ < 0 could no t  be removed  by the M Q C  approx imat ions .  They  are 
p robab ly  caused by the imperfect ion of  the mean-field approach .  
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